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Abstract. Connected Dominating Set is widely used as virtual backbone in wire-
less Ad-hoc and sensor networks to improve the performance of transmission
and routing protocols. Based on special characteristics of Ad-hoc and sensor net-
works, we usually use unit disk graph to represent the corresponding geometrical
structures, where each node has a unit transmission range and two nodes are said
to be adjacent if the distance between them is less than 1. Since every Maximal
Independent Set (MIS) is a dominating set and it is easy to construct, we can
firstly find a MIS and then connect it into a Connected Dominating Set (CDS).
Therefore, the ratio to compare the size of a MIS with a minimum CDS becomes
a theoretical upper bound for approximation algorithms to compute CDS. In our
paper, with the help of Voronoi diagram and Euler’s formula, we improved this
upper bound, so that improved the approximations based on this relation.

Keywords: Connected Dominating Set, Minimum Independent Set, Unit Disk
Graph.

1 Introduction

Wireless Ad-Hoc and sensor network can be widely used in many civilian application
areas, including healthcare applications, environment and habitat monitoring, home au-
tomation, and traffic control [10,6]. Due to the special characteristics of such networks,
we usually use Unit Disk Graph (UDG) to represent their geometrical structures (as-
suming that each wireless node has the same transmission range). A UDG can be for-
mally defined as follows: Given an undirected graph G = (V, E), each vertex v has a
transmission range with radius 1. An edge (v1, v2) ∈ E means the distance between
vertex v1 and v2 is less than or equal to 1, say, dist(v1, v2) ≤ 1.

Compared with traditional computer networks, wireless ad-hoc and sensor networks
have no fixed or pre-defined infrastructure as hierarchical structure, resulting the diffi-
culty to achieve scalability and efficiency [2]. To better improve the performance and
increase efficiency of routing protocols, a Connected Dominating Set(CDS) is selected
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to form a virtual network backbone. The formal definition of CDS can be shown as
follows: Given a graph G = (V, E), a Dominating Set (DS) is a subset C ⊆ V such
that for every vertex v ∈ V , either v ∈ C, or there exist an edge (u, v) ∈ E and u ∈ C.
If the graph induced from C (G[C]) is connected, then C is called a Connected Domi-
nating Set (CDS). Since CDS plays a very important role in routing, broadcasting and
connectivity management in wireless ad-hoc and sensor networks, it is desirable to find
a minimum CDS (MCDS) of a given set of nodes.

Clark et.al. [3] proved that computing MCDS is NP-hard in UDG, and a lot of ap-
proximation algorithms for MCDS can be found in literatures [8,7,1,5]. It is well known
that in graph theory, a Maximal Independent Set (MIS) is also a Dominating Set (DS).
MIS can be defined formally as follows: Given a graph G = (V, E), an Independent
Set (IS) is a subset I ∈ V such that for any two vertex v1, v2 ∈ I , they are not adjacent,
say, (v1, v2) �∈ E. An IS is called a Maximal Independent Set (MIS) if we add one
more arbitrary vertex to this set, the new set will not be an IS any more. Compared with
CDS, MIS is much easier to be constructed. Therefore, people usually construct the ap-
proximation for CDS with two steps. The first step is to find a MIS, and the second step
is to make this MIS connected. As a result, The performance of these approximations
highly depends on the relationship between the size of MIS (mis(G)) and the size of
minimum CDS (mcds(G)) in graph G. Such a relation, say, mis(G)

mcds(G) is also called the
theoretical bound to approximate CDS.

In our paper, we will give a better theoretical bound to approximate CDS, which is
mis(G) ≤ 3.399 · mcds(G) + 4.874, If there are no holes in the area constructed by
the MCDS. The rest of this paper is organized as follows. In Section 2 we introduces
the preliminaries and relation between mis(G) and cds(G), including related works.
In Section 3 with the help of Voronoi division, we divide the plane into several convex
polygons and calculate the area for each polygon under different situations. In Section
4 we use Euler’s formula to calculate a better bound for mis(G)

mcds(G) , and finally Section 5
gives the conclusion and future works.

2 Preliminary and Related Works

As mentioned in Section 1, we use two steps to approximate a CDS in graph G. The
first step is to select a MIS and the second step is to connect this MIS. Let mis(G) be
the size of selected MIS, connect(G) be the size of disks that are used to connect this
MIS, and mcds(G) be the size of minimum CDS. Then, the approximation ratio for
such algorithm is

mis(G) + connect(G)
mcds(G)

=
mis(G)
mcds(G)

+
connect(G)
mcds(G)

.

For the connecting part, Min et.al [9] developed a steiner tree based algorithm to
connect a MIS, with connect(G)

mcds(G) ≤ 3, which becomes the best result to connect a MIS.
On the other hand, for selecting MIS part, Wan et.al. [12] constructed a distributed
algorithm which can select a MIS in graph G with size mis(G) ≤ 4 · mcds(G) + 1.
Later, Wu and her cooperators [13] improved this result into mis(G) ≤ 3.8·mcds(G)+



164 X. Li, X. Gao, and W. Wu

1

1.5

1v 2v
2S

x

y

�

Fig. 1. Two Disks in MCDS

1.2. Funke et.al. [4] discussed the relation between mis(G) and mcds(G) and gave a
theorem saying that mis(G) ≤ 3.453 · mcds(G)+ 8.291, but the proof lack evidences.
In this paper we give a better bound for mis(G) and mcds(G), with a detailed analysis
for the approximation ratio.

Actually, mis(G) and mcds(G) have a really close relationship. Given an UDG
G = (V, E), let M be the set of disks forming MCDS. If we increase the radius of
disks in M from 1 to 1.5, and decrease the radius of the rest disks in V \M from 1 to
0.5, then we can construct a new graph G′. It is easy to know that all the disks in V
are located insides the area formed by M . (For disks in M , obviously they are located
insides themselves, and for disks in V \M , e.g., v1, since M is a MCDS, there exist
a disk v2 ∈ M dominating v2. Therefore dist(v1, v2) ≤ 1. Besides, the radius of v1
is 0.5, while the radius of v2 is 1.5, so v1 must locate inside v2’s disk.) If we select a
MIS for G, then based on the definition of UDG, the distance between any two disks
from MIS should be greater than 1. And since the radius of disks in V \M for G′ is
0.5, any of two disks from MIS will not intersect each other. (To simply the conception,
we can consider the radius of the disks in both MIS and M as 0.5) Then we can get
the conclusion that the sum of maximum area for MIS should be less than the area of
MCDS, which is a rough bound for mis(G)

mcds(G) . The following theorem gives this bound.

Theorem 1. The rough bound for mis(G) and mcds(G) is mis(G) ≤ 3.748·mcds(G)
+ 5.252.

Proof. Consider two disks v1, v2 in MCDS set M . Both of them have radius 1.5, and
max(dist(v1, v2)) = 1. If we set v1 and then add v2, then the newly covered area will
be at most S2, just shown as the shadow in Fig. 1.

Let area(xv1y) be the area of sector xv1y, and area(�xv1y) be the area of triangle
xv1y. Besides, cosα = 1

3 . Then, the area of S2 should be:

area(S2) = π · 1.52 − 2 · (area(xv1y) − area(�xv1y))
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= 2.25π − 2(arccos
1
3

· 1.52 − 1
2

· 1
2

· 2
√

2)

≈ 2.25π − 4.1251

If we mimic the growth of a spanning tree for MCDS, then the maximum number of
MIS should less than the total areas induced from M divide the area for a small disk
with radius 0.5. Consequently, we can get the following inequations.

mis(G) ≤ π · 1.52 + (mcds(G) − 1) · S2

π · 0.52 =
4 · S2

π
· mcds(G) +

4 · 4.1251
π

≈ 3.748 · mcds(G) + 5.252

Thus we proved the theorem.

3 Voronoi Division

Based on Theorem 1 we get an upper bound for mis(G)
mcds(G) . Now let’s analyze the rela-

tionship between mis(G) and mcds(G) more specifically. Before our discussion, let’s
firstly introduce the definition of Voronoi Division, which can be referred from [11].

Definition 1. Let S a set of n sites in Euclidean space. For each site pi of S, the Voronoi
cell V (pi) of pi is the set of points that are closer to pi than to other sites of S, say,

V (pi) =
⋂

1≤j≤n, j �=i

{p : |p − pi| ≤ |p − pj |}.

The Voronoi diagram V (S) is the space partition induced by Voronoi cells.

Similarly, for graph G′, let S be the set of selected MIS, then for each disk wi ∈ S,
we can find the corresponding Voronoi cell (the outer boundary is the boundary for
MCDS.) Fig. 2 gives an example with mcds(G′) = 2 and mis(G′) = 7. It is easy to
know that each non-boundary Voronoi cell is a convex polygon, and the area is greater
than a disk with radius 0.5. Next let’s analyze the area for each kind of polygons under
densest situations. For these boundary Voronoi cells, we also consider them as a special
kind of polygons with one arc edge.

3.1 Triangle

Assume that we have a Voronoi cell Ci as a triangle including disk wi. Then the area
of Ci is smaller if wi is its inscribed circle. Besides, among those triangles, the area of
equilateral triangle is the smallest. The following lemma gives proof for this conclusion.

Lemma 1. The equilateral triangle has the smallest area among other triangles with
wi as its inscribed circle.
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Fig. 2. Example for Voronoi Diagram

Proof. Let a, b, c be the lengths of three edges for triangle Ci, wi be its inscribed circle,
and r = 0.5 be the radius of this circle. Then based on Heron’s formula, we have

area(Ci) =
1
2
(a + b + c) · r = s · r =

√
s(s − a)(s − b)(s − c),

where s = a+b+c
2 is the semiperimeter. Since r is fixed, the smallest area comes when

s is smallest. Therefore we have the following model.
⎧
⎨

⎩

min s = 1
2 (a + b + c)

s.t.
√

(s−a)(s−b)(s−c)
s = r = 1

2 .
(1)

Based on Lagrange’s formula, let

F (a, b, c) = (a + b + c) − λ

(√
(b + c − a)(a + c − b)(a + b − c)

a + b + c
− 1

)
,

then (1) can be changed into min F (a, b, c), and the extreme value comes out when the
following partial derivative holds:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂F/∂a = 0

∂F/∂b = 0

∂F/∂c = 0

∂F/∂λ = 0

(2)

Then we get that when a = b = c = f(λ, s), (2) holds. Therefore the equilateral trian-
gle has the smallest area. Let P3 denote such kind of triangle, just shown in Fig.3(a).
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Fig. 4. Compute Area for E3

Similarly, if Ci is a boundary cell, then the one with smallest area should be an equi-
lateral triangle with one side cut by an arc from disks in MCDS at one of its tangency
point. An example can be seen from Fig.3(b). Let E3 denote such pseudo triangle. It is
easy to know that area(P3) = 6 · 1

2 · 1
2 ·

√
3

2 ≈ 1.299. To compute the area of E3, we
will use integral. According to Fig.4, area(E3) = area(P3) − 2 · S3, where S3 is the
shadow formed by the boundary arc and two edges of P3. Therefore, we have that

S3 = f(y) − g(y)

=
∫ a

0

{(
y

tan 2π
3

+
1
2

tan
π

3

)
−

√
9
4

+ (y − 3
2
)2

}
dy

≈ 0.0605

where f(y) is the function for intersecting edge of triangle and g(y) is the function for
the arc of ICMS. As a consequence, area(E3) = 1.1781.
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3.2 Quadrangle, Pentagon and Hexagon

If a non-boundary Voronoi cell Ci has four edges, then using similar conclusion, we
can get that a square with wi as its inscribed circle has the smallest area. Let P4 be such
kind of polygon, just shown as Fig.5(a). If Ci is a boundary Voronoi cell, then under
two conditions Ci will have the minimum area. The first condition is when boundary
arc cut off one angle of P3, just shown as Fig.5(b), we name it as A4; and the second
condition is when boundary arc cut off one edge of P4, shown as Fig.5(c), we name it as
E4. Using similar approach as triangles, we can calculate the area for these quadrangles,

( )a ( )b ( )c

4
P

4
A

4
E

Fig. 5. Example for Quadrangle Cells

and give the result that

area(P4) = 1, area(A4) ≥ 1.1357, area(E4) = 0.9717

Repeat the above step for Ci as Pentagon and Hexagon, we can have the following
conclusion:

area(P5) = 0.9082, area(A5) ≥ 0.9499, area(E5) = 0.8968
area(P6) = 0.8661, area(A6) ≥ 0.8855, area(E6) = 0.8546

Fig.6 is examples for pentagons and hexagons. After our calculation, we can get the
conclusion that area(Ai) ≥ area(Ei) for i ≥ 3. Therefore, in the next section, we will
use Ei as the smallest boundary Voronoi Cell as i pseudo polygon.

3.3 Heptagon and Others

For a non-boundary Voronoi cell Ci, if Ci is a heptagon or n-polygon, n ≥ 7, we will
have the following lemma.

Lemma 2. The area of non-boundary n-polygon Ci (n ≥ 7) is greater then area(P6).

Proof. Firstly, it is easy to know that Ci with 6 adjacent neighbors is the densest situ-
ation if any two small disks does not intersect each other, just shown in Fig.7(a). Next,
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Fig. 6. Examples for Pentagon and Hexagon Cells

if Ci has 7 or more neighbors, then there must exist at least one disk wj which doesn’t
touch wi (wi is the inner disk for Ci). Hence, the edge for Ci created by wi and wj

is not the tangent line for wi. On the consequence, the area covered by Ci is greater
than area(P6). An example of P7 can be shown in Fig.7(b). If n > 7, then the area of
Ci will be bigger. Therefore, any Voronoi cell whose edges are more than 6 will have
bigger area then P6.

However, for boundary Voronoi heptagon Ci, when boundary arc cut off one angle of
P6, the area will become minimum. Such pseudo heptagon is A7 (see Fig.8). After
calculation, we have that area(A7) = 0.8525. Similar as Lemma 2, the boundary n-
polygon Ci will have bigger area than area(A7) if n > 7.

3.4 Updated Upper Bound

As mentioned above, A7 is the smallest type of Voronoi cells. Then we can have a better
bound for mis(G)

mcds(G) .

Theorem 2. mis(G) ≤ 3.453 · mcds(G) + 4.839

Proof. Similarly as proof for Lemma 1, we have

mis(G) ≤ π · 1.52 + (mcds(G) − 1) · S2

area(A7)
=

S2

0.8525
· mcds(G) +

4.1251
0.8525

≈ 3.453 · mcds(G) + 4.839

which is almost the same as [4].
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Fig. 8. Example for Heptagon Cells

4 Computing New Upper Bound

In this section, we will compute a better upper bound for mis(G)
mcds(G) using Voronoi divi-

sion and Euler’s formula. Firstly, we give some notations. Let si be the minimum area
of the non-boundary cell(i-polygon cell) and s′i that of the boundary cell. From Section
3, we have that

s3 ≥ s4 ≥ s5 ≥ s6 ≤ s7 ≤ s8 . . . and s′3 ≥ s′4 ≥ s′5 ≥ s′6 ≥ s′7 ≤ s′8 ≤ s′9 . . .

For convenience, we set si = s6 when i ≥ 7 and s′i = s′7 when i ≥ 8. Hence, we get
the following equations.

s3 = 1.299, s4 = 1, s5 = 0, 9082, s6 = s7 = · · · = 0.8661. (3)

s′3 = 1.1781, s′4 = 0.9717, s′5 = 0, 8968, s′6 = 0.8546, s′7 = s′8 = · · · = 0.8525. (4)

4.1 3-Regularization

To simplify our calculation, in the subsection we will modify the Voronoi division such
that any vertex of v in Voronoi division has degree exactly 3. For every vertex v, it is
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Fig. 9. Regularization when d(v) = 5

easy to see that d(v) ≥ 3. For any vertex v whose d(v) = d > 3, let u0, u1, . . . , ud−1
be its neighbors in clockwise ordering. Replace this vertex with d − 2 new vertices
v1, . . . , vd−2 such that the distance between any vi and vj is not more than ε. Then,
connect every ui and vi and add two edges u0v1 and ud−1vd−2. Fig.9 gives an illustra-
tion when d(v) = 5.

After regularization, we can see that every vertex in Voronoi division has degree of
exactly 3. Furthermore, if we choose ε sufficiently small, the area of every Voronoi cell
will almost remain the same and the number of edges of new Voronoi cell is no less
than that of original Voronoi cell. Hence, equations (3) and (4) are also hold.

4.2 Euler’s Formula

Let ∂fout be the outer boundary of the area constructed by the MCDS. It is trivial that
the inside part of ∂fout together with ∂fout form graph G′. Note that there may exist
some holes in G′, where each hole means a connected area inside the ∂fout, but not
within the area constructed by the MCDS. In this subsection, we firstly suppose there
are no holes in G′, which means that the wireless transmission range will cover the
plane we discuss. Let fi and f ′

i be the number of non-boundary and boundary Voronoi
cells with exactly i edges, respectively. Then using Euler’s formula, we have

∑
i

(fi +

f ′
i) + 1 − m + n = 2. Since G′ is a cubic graph, 2m = 3n. Hence,

∑

i

(fi + f ′
i) + 1 − 1

2
n = 2. (5)

Let |∂fout| be the number of edges in the outer face. Since every edge is exactly in two
faces, ∑

i

(i(fi + f ′
i)) + |∂fout| = 2m = 3n. (6)

For any boundary Voronoi cell, it must have at least one edge belonging to the outer
face. Hence, ∑

i

f ′
i ≤ |∂fout|. (7)
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Combining (6) and (7), we have

∑

i

ifi +
∑

i

(i + 1)f ′
i − 3n ≤ 0. (8)

Then we combine Euler’s formula and (8) together. Let -1× (8)+ 6× (5), we have

3f3 + 2f ′
3 + 2f4 + f ′

4 + f5 − f ′
6 − f7 − 2f ′

7 − · · · ≥ 6. (9)

Since all Voronoi cells are contained in the area constructed by the MCDS, consider
this area and combining (3) and (4), we have

∑
i

(sifi + s′if
′
i)

= 1.299f3 + 1.178f ′
3 + f4 + 0, 972f ′

4 + 0.9082f5 + 0.8968f ′
5 + 0.886(f6 + f7 + · · · )

+0.8546f ′
6 + 0.8525(f ′

7 + f ′
8 + · · · )

≤ 2.9435 · mcds(G) + 4.1251.

(10)
Then, -0.0114× (9)+(10), we obtain

1.2648f3 + 1.1402f ′
3 + 0.9672f4 + 0.9492f ′

4 + 0.8853f5 + 0.8968f ′
5

+ 0.886f6 + 0.8974f7 + · · · + 0.866f ′
6 + 0.8753f ′

7 + · · ·

≤ 2.9435 · mcds(G) + 4.2205.

(11)

From (11), since mis(G) =
∑
i

(fi + f ′
i), we have

0.866 · mis(G) = 0.866
∑

i

(fi + f ′
i) ≤ 2.9435 · mcds(G) + 4.2205.

Hence, mis(G) ≤ 3.399 · mcds(G) + 4.874. Consequently, we have the following
theorem.

Theorem 3. For any unit disk graph G, let mis(G) and mcds(G) be the number of
disks in any maximal independent set and minimum connected dominating set, respec-
tively. If there are no holes in the area constructed by the MCDS, then mis(G) ≤
3.399 · mcds(G) + 4.874.

4.3 Discussion with Holes

Actually, in the real world there may exist some place where the wireless signal cannot
reach, and some holes in the area constructed by the MCDS. Therefore, in this subsec-
tion we will discuss G′ with holes in the following. Let k be the number of the holes in
G′ and |∂fhole| be the number of edges in all holes. The equations (5) and (6) alter as

∑

i

(fi + f ′
i) + 1 + k − 1

2
n = 2.
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∑

i

(i(fi + f ′
i)) + |∂fout| + |∂fhole| = 2m = 3n.

For any boundary Voronoi cell, it must have at least one edge belonging to the outer
face or one hole. Hence,

∑

i

f ′
i ≤ |∂fout| + |∂fhole|.

Calculate them by the same strategy as the subsection 4.2, we can obtain that

1.2648f3 + 1.1402f ′
3 + 0.9672f4 + 0.9492f ′

4 + 0.8853f5 + 0.8968f ′
5

+ 0.886f6 + 0.8974f7 + · · · + 0.866f ′
6 + 0.8753f ′

7 + · · ·

≤ 2.9435 · mcds(G) + 0.0684k + 4.2205.

(12)

Then we have,

mis(G) ≤ 3.399 · mcds(G) + 0.0790k + 4.874.

It is easy to see that k ≤ mcds(G). Next we can obtain the following theorem.

Theorem 4. For any unit disk graph G, let mis(G) and mcds(G) be the number of
disks in any maximal independent set and minimum connected dominating set, respec-
tively. Then mis(G) ≤ 3.478 · mcds(G) + 4.874.

Besides, after analyzing the relation between disks in MCDS and based on the charac-
teristics for CDS, we can have the following lemma.

Lemma 3. For any unit disk graph G, let MCDS be a minimum connected dominating
set. To form a hole, there need at least 6 connect vertices in MCDS. Fig.10 is an example
for a hole.

� � �. +

�

1
h

2
h

3
h

4
h

5
h

6
h

Fig. 10. Example for a Hole
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Proof. Let h be a point in a hole and m1, . . . , mt be the vertices in MCDS which can
form the hole including h and can induce a connect graph. By the definition of a hole, h
can not be covered by any disk from MCDS with radius 1.5. Hence, choosing h as the
center and draw a disk D with radius 1.5, any vertex mi will lie outside this disk D. It is
easy to see that if we form a hole with minimum number of vertices, the graph induced
by m1, . . . , mt is a path and mi is sufficiently close to disk D. Let hmi intersect disk
D at hi. Then the radians of the central angle ∠hihhi+1 should be

∠hihhi+1 ≤ 2 arcsin
1/2hihi+1

hhi
= 2 arcsin

1
3
.

Furthermore, since m1, . . . , mt form a hole, the distance between m1 and mt is less
than 3. Hence, the central angle ∠h1hht is more than π and t ≥ 
 π

2 arcsin 1
3
� + 1 = 6.

5 Conclusion

In this paper, we presented a better upper bound to compare MIS and MCDS in a
given UDG G with the help of Voronoi Division and Euler’s Formula. If the area cov-
ered by MCDS has no holes, then the best upper bound for MIS and MCDS should
be mis(G) ≤ 3.399 · mcds(G) + 4.874. If there exist some uncovered holes, then
the bound will become mis(G) ≤ 3.478 · mcds(G) + 4.874 by Euler’s formula, and
mis(G) ≤ 3.453 · mcds(G) + 4.839 by comparison of area for MCDS and area for
smallest Voronoi Cell. Actually, based on the discussion for Lemma 3, we guess that
the relation between k and mcds(G) can be k ≤ 1

3mcds(G), and so comes the result
that mis(G) ≤ 3.425 · mcds(G) + 4.839. The detailed proof becomes a future work
which needs thorough discussion.
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